VETINDEX

Periódicos Brasileiros em Medicina Veterinária e Zootecnia

p. 1-9

Cholinesterase activities and oxidative stress in cattle experimentally exposed to nitrate/nitrite in cultivated pasture with different fertilization schemes

Christ, RicardoSilva, Aleksandro Schafer daGabriel, Mateus EloirHenker, Luan CleberCechin, Renan AugustoPiva, Manoela MarchezanBottari, Nathieli BianchinSchetinger, Maria Rosa ChitolinaCesaro, Matheus Pedrotti deMorsch, Vera MariaMendes, Ricardo Evandro

Background: Nitrate and nitrite poisoning is associated with pasture intake that has high nitrate levels and leads to acute methemoglobinemia. Pasture may accumulate nitrate under certain conditions, such as excessively fertilized soil or environmental conditions that enhance the N absorption (rain preceded by a period of drought). After ingestion of plants, this substrate reaches the rumen and, in physiological conditions, is reduced to nitrite and afterward to ammonia. The aim of this study was to evaluate changes in cholinesterase activities and oxidative stress caused by subclinical poisoning for nitrate and nitrite in cattle fed with Pennisetum glaucum in three different fertilization schemes.Materials, Methods & Results: In order to perform the experimental poisoning, the pasture was cultivated in three different paddocks: with nitrogen topdressing (urea; group 1), organic fertilizer (group 2) or without fertilizer (group 3; control). Nitrate accumulation in forage was evaluated by the diphenylamine test. After food fasting of 12 h, nine bovine were randomly allocated to one of the experimental groups and fed with fresh forage (ad libitum) from respective paddock. In different time points from beginning of pasture intake (0, 2, 4, 6 and 9 h) heart rate and respiratory frequency were assessed, as well as mucous membrane color and behavioral changes. Blood samples from jugular vein into vials with and without anticoagulant were collected. From blood samples, serum nitrite levels, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzyme activity were evaluated, as well as oxidative stress through the following parameters: levels of nitrate/nitrite (NOx ), thiobarbituric acid reactive substances (TBARS) and reactive oxygen species (ROS), beyond the antioxidant system by enzyme activity measurement of catalase (CAT) and superoxide dismutase (SOD).[...](AU)

Texto completo